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On nonlinear convection in mushy layers
Part 1. Oscillatory modes of convection
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We consider the problem of nonlinear convection in horizontal mushy layers during
the solidification of binary alloys. We analyse the oscillatory modes of convection
in the form of two- and three-dimensional travelling and standing waves. Under a
near-eutectic approximation and the limit of large far-field temperature, we determine
the solutions to the nonlinear problem by using a perturbation technique, and the
stability of two- and three-dimensional solutions in the form of simple travelling
waves, general travelling waves and standing waves is investigated. The results of the
stability and the nonlinear analyses indicate that supercritical simple travelling rolls
are stable over most of the studied range of parameter values, while supercritical
standing rolls can be stable only over some small range of parameter values, where
the simple travelling rolls are unstable. The results of the investigation of the onset
of plume convection and chimney formation leading to the occurrence of freckles in
the alloy crystal indicate that the chimney of the plume can be generated internally
or near the lower boundary of the mushy layer. The roles of a Stefan number, a
permeability parameter and a concentration ratio on the flow instability in both linear
and nonlinear regimes are also determined.

1. Introduction
Recently Anderson & Worster (1996) considered the problem of convection during

the solidification of a binary alloy in a horizontal mushy layer, analysed the linear
stability of a motionless state and identified an oscillatory instability. Their inves-
tigation was based on a single-layer model of the mushy zone due to Amberg &
Homsy (1993). A near-eutectic approximation was employed and the limit of large
far-field temperature was considered. Such asymptotic limits allowed them to examine
the dynamics of the mushy layer in the form of a small deviation from the classical
system of convection in a horizontal porous layer of constant permeability. They also
considered the limit of large Stefan number, which enabled them to reach the domain
for the existence of the oscillatory instability.

The oscillatory instability detected by Anderson & Worster (1996) was based on
a single-layer model in which the dynamics of the mushy layer were decoupled
from the dynamics of the overlying liquid layer. Their oscillatory instability was
distinct from that found by Chen, Lu & Yang (1994), which arose due to double-
diffusive convection in a two-layer system in which stabilizing thermal buoyancy was
present. The one-layer model treated in Anderson & Worster (1996) did not have
double-diffusive effects, due to strong coupling between the solute and thermal fields,
which was imposed by the condition of thermodynamic equilibrium. The oscillatory
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instability discovered by Anderson & Worster (1996) was due to a mechanism internal
to the mushy layer, similar to the oscillatory instability detected earlier by Sayre &
Riahi (1995, 1997) in a linear and two-layer model and in the absence of any double-
diffusive effect, and it implied the existence of an important interaction between
convection and solidification within the mushy layer.

In the present investigation, we first revisit the linear model treated by Anderson
& Worster (1996), and then extend that model to the nonlinear regime. We detect
more dominant effects of the oscillatory modes of convection in the mushy layer
and, through a stability analysis of the secondary solutions of the convective flow,
determine the preferred flow pattern and the onset of plume convection, which can
lead to chimney formation and the subsequent occurrence of freckles in the alloy
crystal. Freckles are highly undesirable features since they are imperfections that can
alter the material and mechanical properties of the solidified alloy.

The motivation of the present study is the desirability of understanding the qual-
itative features of the convective modes in the mushy layer and the onset of plume
convection and formation of chimneys, so that, subsequently, ways to control the
undesirable plume convection can be developed. For justification of the present an-
alytical investigation of Amberg & Homsy’s (1993) model, we refer the reader to
their paper which provides convincing arguments about the complementary nature
of the analytical studies of such model and the linear stability analysis of a more
complete two-layer model, such as the one carried out by Worster (1992), and the
fully numerical simulation of a more sophisticated mushy layer system (Neilson &
Incropera 1993).

Few analytical investigations have been carried out so far on nonlinear convection
in a mushy layer. Amberg & Homsy (1993) developed a single-layer model for
convection in a horizontal mushy layer which focuses on the mushy-layer mode of
convection, which is one of the two primary modes of convection discovered earlier
by Worster (1992) in a two-layer system. Amberg & Homsy (1993) made a number of
simplifying assumptions including both the thickness of the layer and the departure
from the eutectic point being small and the mushy layer being isolated from the
overlying liquid layer. Among the non-dimensional parameters of their model, a
Stefan number St, representing the latent heat release due to solidification, turns
out to play a significant role in the realization of the non-oscillatory or oscillatory
nature of the mode of convection in the mushy layer. Amberg & Homsy (1993)
considered only order-one values of St in their study. However, as already noted by
Anderson & Worster (1996), for such values of St, no oscillatory mode of convection
are found at the onset of motion, whereas they are found for large values of St. This
result has also been confirmed by our calculation in the present study. Amberg &
Homsy’s model describes correctly the coupling between the flow and re-melting for
the nonlinear mushy-layer mode, which is thought to be responsible for the chimney
formation. Amberg & Homsy (1993) rescaled the variables and the Rayleigh number
appropriately and restricted their analysis to the case where the mushy-layer thickness
δ is of order of the amplitude ε of convection. They employed a weakly nonlinear
analysis and calculated solutions in the form of two-dimensional steady rolls to order
ε2 and steady hexagons to order ε. They found that either sub- or supercritical steady
rolls are possible and steady hexagons can be transcritical.

Anderson & Worster (1995) extended the weakly nonlinear analysis of Amberg
& Homsy (1993) to the limit of large St and the case ε� δ � 1. They applied a
double-series expansion in powers of ε and δ for the rescaled variables and the
Rayleigh number. They focused on the steady modes of convection and calculated
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the steady solutions in the form of two-dimensional rolls and hexagons, and analysed
the stability of these solutions using the evolution equation that they derived for
small-amplitude coefficients of such solutions. They found that rolls or hexagons,
with either up-flow or down-flow at the cell centres, could be stable, depending on
the relative strengths of different physical mechanisms.

The present paper studies the oscillatory modes of convection in mushy layers using
Amberg & Homsy’s (1993) model in its extended form as studied by Anderson &
Worster (1995). We employ weakly nonlinear and stability analyses to determine the
finite-amplitude oscillatory solutions and their stability with respect to arbitrary three-
dimensional disturbances. The objectives of the analysis are to isolate the nonlinear
properties of the oscillatory modes of the compositional convection in the mushy
layers for various values of the parameters and to determine the preferred flow
features and structures near the onset of plume convection and chimney formation.
We have found a number of interesting results. In particular, depending on the values
of the parameters, either simple travelling rolls in the form of either right-travelling
rolls (where the phase velocity of the rolls is in the direction of the component of
the position vector along the wavenumber vector) or left-travelling rolls, (where the
phase velocity of the rolls is in the direction opposite to that of the component of the
position vector along the wavenumber vector) or standing rolls can be stable. The
stable travelling and standing rolls were found to be supercritical.

Our study complements the previous nonlinear study of non-oscillatory convection
in mushy layers by Anderson & Worster (1995). We noted that, at the relevant
scaling established by Anderson & Worster (1995, 1996), the linear system of the
problem exhibits both stationary and oscillatory modes of convection at comparable
critical values of the Rayleigh number for the onset of convection. Hence, to determine
valid analytical results, which could also be compared with the available experimental
results (Tait, Jahrling & Jaupart 1992), a nonlinear theory needed to be developed and
analysed, which could account for both stationary and oscillatory modes of convection
(Riahi 2002). However, prior to the present study, no nonlinear investigation of
oscillatory convection alone in mushy layers had been carried out, and, thus, to
understand its qualitative features the present investigation was necessary. The present
paper is part 1 of a comprehensive nonlinear study of oscillatory and stationary modes
of convection in mushy layers. Part 2 of the study (Riahi 2002) takes into account
the combination of both oscillatory and non-oscillatory modes, in order to arrive at
a reasonably complete theory for the present problem.

Recently Chung & Chen (2000) considered the mushy layer treated by Anderson &
Worster (1995) but for a constant pressure condition at the upper boundary instead
of the original impermeable upper boundary condition. They carried out essentially
the same type of analysis, procedure and method of approach as Anderson &
Worster (1995) to determine the steady solutions for rolls and hexagons. The constant
pressure condition at the upper boundary improves the model quantitatively, as was
shown by Chung & Chen (2000), since with it the mushy layer model of Amberg
& Homsy (1993) becomes closer to the more complete two-layer model of an actual
solidification system, which, in particular, allows inflow and outflow through the
mush–liquid interface. However, no significant qualitative improvement of the results
was expected as is evident from the results due to Chung & Chen (2000). Like
Anderson & Worster (1995) we consider the model with the impermeable upper
boundary condition. We did not employ the permeable upper boundary condition,
such as the condition ∂w/∂z = 0 used by Chung & Chen (2000), for three main
reasons. First, as is evident from the work of these latter authors, the permeable
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upper boundary condition for the mushy layer model complicates the analytical
procedure to determine the solutions, and it amplifies the other complications, which
arise as a result of the oscillatory nature of the modes. Secondly, as is often the
case in the classical convection system, there is no evidence that any new significant
qualitative result can be obtained by such a change in the upper boundary condition.
Thirdly, we were interested only in determining the qualitative features of the results.
Thus, as in the case of the very recent study by Guba (2001) and as discussed earlier
by Anderson & Worster (1995, 1996), Amberg & Homsy’s simpler model, which can
provide reliable qualitative predictions, was found to be quite suitable and appropriate
for our investigation.

In regard to the prediction of the available experimental results (Tait et al. 1992),
it should be noted that no theoretical studies have yet predicted the preference of
down-hexagons in the same parameter regime as observed by Tait et al. (1992).
Although the quantitative results reported in Chung & Chen (2000) indicated that
the domain of stable down-hexagons was enlarged compared to the corresponding
domain determined by Anderson & Worster (1995), the main disagreement with the
experimental result of Tait et al. (1992) still persisted. Chung & Chen (2000) predicted
stable up-hexagons in the parameter regime where Tait et al. (1992) observed stable
down-hexagons. The reason for this inconsistency, for steady convection and based
on the single-layer models, is not known at present, but it could be due to factors
such as the near-eutectic approximation, the large far-field temperature limit, the
exclusion of the overlying liquid layer, the prescribed constrained growth at constant
solidification rate and the exclusion of the oscillatory modes. As is explained further
in the § 6, the investigation of part 2, which will take into account combination of both
oscillatory and stationary modes of convection, is expected to indicate enlargement
of the domain for the preference of down-hexagons.

The following three sections 2–4 deal with the mathematical formulation of the
problem, the general description of the nonlinear oscillatory convection and the
stability analysis. The results of the oscillatory solutions are presented and discussed
in § 5, which is followed by the conclusion and some remarks in § 6.

2. Mathematical formulation
We consider a binary alloy melt that is cooled from below and solidified at a

constant speed V0. Following Amberg & Homsy (1993) and Anderson & Worster
(1995), we consider a horizontal mushy layer of thickness d adjacent to and above
the solidification front to be physically isolated from the overlying liquid and un-
derlying solid zones. The overlying liquid is assumed to have a composition C0 > Ce
and temperature T∞ > TL(C0) far above the mushy layer, where Ce is the eutectic
temperature, TL(C̃) is the liquidus temperature of the alloy and C̃ is the composition.
It is thus assumed that the mushy layer is bounded from above and below by rigid
and isothermal boundaries. We consider the solidification system in a moving frame
of reference ox̃ỹz̃, whose origin lies on the solidification front and translating at the
speed V0 with the solidification front in the positive z̃-direction.

It should be noted that no double-diffusive effect is present in the above-described
one-layer mushy-zone model since such a mushy layer is assumed to be in local
thermodynamic equilibrium and, thus,

T = TL(C0) +M(C̃ − C0),

where T is the temperature and M is the slope of the liquidus (Anderson & Worster
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1996). The mushy layer is treated as a porous layer (Fowler 1985; Worster 1992),
where the solid dendrites and the liquid coexist, and Darcy’s law is used.

Next, we consider the equations for momentum, continuity, heat and solute for the
flow of melt in the mushy layer in the moving frame described above. These equations
are non-dimensionalized by using V0, k/V0, k/V

2
0 , β∆Cρgk/V0, ∆C and ∆T as scales

for velocity, length, time, pressure, solute and temperature, respectively. Here k is the
thermal diffusivity, ρ is a reference (constant) density, β = β∗ −Mα∗, where α∗ and β∗
are the expansion coefficients for the heat and solute, respectively, and M is assumed
to be constant, ∆C = C0 − Ce, ∆T = TL(C0)− Te and Te is the eutectic temperature.
The non-dimensional form of the equations for momentum, continuity, temperature
and solute concentration in the mushy layer are (Worster 1992)

K(φ̃)u = −∇P̃ − R̃θ̃z, (1a)

∇ · u = 0, (1b)(
∂

∂t̃
− ∂

∂z̃

)
(θ̃ − Stφ̃) + ũ · ∇θ̃ = ∇2θ̃, (1c)(

∂

∂t̃
− ∂

∂z̃

)
[(1− φ̃)θ̃ + Crφ̃] + ũ · ∇θ̃ = 0, (1d)

where ũ = ũx + ṽy + w̃z = (1 − φ̃)U is the volume flux per unit area (Joseph 1976),
U is the velocity vector, ũ and ṽ are the horizontal components of u in the x̃- and
ỹ-directions, respectively, x and y are unit vectors in the positive x̃- and ỹ-directions,
w̃ is the vertical component of u in the z̃-direction, z is a unit vector in the positive
z̃-direction, P̃ is the modified pressure, θ̃ is the non-dimensional composition, or
equivalently temperature (Worster 1992), θ = [T − TL(C0)]/∆T = (C̃ − C0)/∆C , t̃ is

the time variable, φ̃ is the local solid fraction, R̃ = β∆CgΠ(0)/(V0ν) is the Rayleigh

number, Π(0) is reference value at φ̃ = 0 of the permeability Π(φ̃) of the porous
medium, which is assumed to be finite (Worster 1992), ν is the kinematic viscosity, g is
acceleration due to gravity, K(φ̃) ≡ Π(0)/Π(φ̃), St = L/(CL∆T ) is the Stefan number,
CL is the specific heat per unit volume, L is the latent heat of solidification per unit
volume, Cr = (Cs − C0)/∆C is a concentration ratio, and Cs is the composition of the
solid-phase forming the dendrites. Equation (1d ) is based on the limit of sufficiently
large value of the Lewis number k/ks (Worster 1992; Anderson & Worster 1995),
where ks is the solute diffusivity.

The governing equations (1a)–(1d ) are subject to the boundary conditions (Amberg
& Homsy 1993)

θ̃ + 1 = w̃ = 0 at z̃ = 0, (2a)

θ̃ = w̃ = φ̃ = 0 at z̃ = δ, (2b)

where δ = dV0/k is a growth Péclet number representing the dimensionless depth of
the layer.

Following Anderson & Worster (1995, 1996), in reducing the model asymptotically
we assume the following rescaling in the limit of sufficiently small δ:

Cr = C/δ, St = S/δ, ε� δ � 1, (3a)

(x̃, ỹ, z̃) = δ(x, y, z), t̃ = δ2t, R2 = δR̃, (3b)

θ̃ = θB(z) + εθ(x, y, z, t), (3c)

φ̃ = φB(z) + εφ(x, y, z, t), (3d)
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ũ = 0 + (εR/δ) u(x, y, z, t), (3e)

P̃ = RPB(z) + RεP (x, y, z, t), (3f)

where C and S are order-one quantities as δ → 0, and the quantities with subscript
‘B’ are the basic flow variables for the motionless state, which are assumed to be a
function of z only. The small deviation of each dependent variable from its basic
state is measured by a perturbation amplitude ε and can vary with respect to the
horizontal, vertical and time variables as shown in (3c)–(3f ).

As discussed in Anderson & Worster (1995, 1996), the assumption of thin mushy
layer (δ � 1) is associated with large non-dimensional far-field temperature θ∞=[T∞−
TL(C0)]/∆T � 1, which can occur when the initial C̃ is close to Ce. The assumption
of order-one C corresponds to the near–eutectic approximation (Fowler 1985), which
allows one to describe the mushy layer as a porous layer of constant permeability
to the leading order. The assumption of order-one S allowed Anderson & Worster
(1996) to detect an oscillatory instability from their linear model.

The rescalings (3a)–(3f ) are then used in (1a)–(1d ) and (2a)–(2b). This system of
equations and boundary conditions admits a motionless basic state, which is steady
and horizontally uniform. The basic-state solution in terms of asymptotic expansions
for δ � 1 is

θB = (z − 1) + δ(z − z2)G/2 + · · · , G ≡ 1 + S/C, (4a)

φB = δ(1− z)/C + δ2[−(1− z)2/C2 + (z2 − z)G/(2C)] + · · · , (4b)

PB = P0 + R[(z − z2/2) + δ(z2/2− z3/3)G/2 + · · ·], (4c)

where P0 is a constant. Since φ̃ is expected to be small, according to (4b), the following
expansion for K(φ̃) will be implemented later in the governing system:

K(φ̃) = 1 +K1φ̃+K2φ̃
2 + · · · , (5)

where K1 and K2 are constants (Amberg & Homsy 1993).
For the analysis to be presented in the next section, it is convenient to use the

general representation

u = ΩV + EΨ, (6a)

Ω = ∇× ∇× z, E = ∇× z, (6b)

for the divergent–free vector field u (Chandrasekhar 1961). Here V and Ψ are the
poloidal and toroidal functions for u, respectively. By taking the vertical component
of the curl of (1a) it can be shown that the toroidal part EΨ of u must vanish. Taking
the vertical component of the double curl of (1a) and using (1b) in (1)–(2), we find
the following system, which will be analysed in the next section:

∇2[K(φB + εφ)∆2V ] +

(
∂

∂z

)
[ΩV · ∇K(φB + εφ)]− R∆2θ = 0, (7a)(

∂

∂t
− δ ∂

∂z

)(
−θ +

Sφ

δ

)
+ R

(
dθB
dz

)
∆2V + ∇2θ = εRΩV · ∇θ, (7b)(

∂

∂t
− δ ∂

∂z

)[
(−1 + φB)θ + θBφ+ εφθ − Cφ

δ

]
+ R

(
dθB
dz

)
∆2V = εRΩV · ∇θ, (7c)

θ = V = 0 at z = 0, (7d)

θ = V = φ = 0 at z = 1, (7e)
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where

∆2 ≡ ∂2

∂x2
+

∂2

∂y2
.

3. Weakly nonlinear analysis
In this section we perform a weakly nonlinear analysis, based on double series

expansions in powers of two small parameters for the perturbation quantities, of
the type carried out by Busse (1967) and Busse & Riahi (1980). Here the two small
parameters are δ and ε which satisfy the condition given in (3a). Following Anderson
& Worster (1995), we first make a formal asymptotic expansion in ε� 1 and then
at each order in ε make a formal asymptotic expansion in δ � 1. Since we shall
investigate the oscillatory modes of convection, the appropriate expansions are for
the dependent variables of the perturbation system, R and the frequency ω of the
oscillatory modes of convection (Riahi 1992). These expansions are

(V , θ, φ, R, ω) = [(V00 + δV01 + · · ·), (θ00 + δθ01 + · · ·), (φ00 + δφ01 + · · ·),
(R00 + δR01 + · · ·), (ω00 + δω01 + · · ·)] + ε[(V10 + δV11 + · · ·),
(θ10 + δθ11 + · · ·), (φ10 + δφ11 + · · ·), (R10 + δR11 + · · ·),
(ω10 + δω11 + · · ·)] + ε2[(V20 + δV21 + · · ·), (θ20 + δθ21 + · · ·),
(φ2(−1)/δ + φ20 + δφ21 + · · ·), (R20 + δR21 + · · ·),
(ω20 + δω21 + · · ·)] + · · · , (8)

where, as in the case of steady modes (Anderson & Worster 1995), the expansion of
φ is singular at order ε2 as δ → 0, but it turns out that O(1/δ) is needed only in the
stability analysis of the next section since the O(ε2) problem is found to be forced by
a term of O(1/δ) in the solute equation for the disturbances.

Upon inserting (8) into (7a)–(7e) and disregarding the nonlinear terms, we find the
linear problem which we analysed in direct analogy to that carried out by Anderson
& Worster (1996). Hence, no details will be provided here and, instead, the main
results on the neutral boundary are given. At order 1/δ we find ω00 = 0. At order δ0

we find

V00 = [(π2 + a2)/(R00a
2G)] sin(πz)

N∑
n=−N

(A+
n η

+
n + A−n η

−
n ), (9a)

θ00 = − sin(πz)

N∑
n=−N

(A+
n η

+
n + A−n η

−
n ), (9b)

φ00 =

N∑
n=−N

[ fn(z)A
+
n η

+
n + f∗n(z)Anη

−
n ], η±n ≡ exp[i(an · r ± Snωt)], (9c)

R2
00 = (π2 + a2)2/(a2G), (9d)

where

fn(z) = (iω01Sn/π) sin(πz) + cos(πz) + exp[iω01Sn(z − 1)] (9e)

and

Sn ≡ 1 for n > 0 and − 1 for n < 0. (9f )
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Here i is the pure imaginary number (i ≡ √ − 1), subscript ‘n’ takes only non-zero
integer values from −N to N, N is a positive integer representing the number of
distinct modes, r is the position vector, and the horizontal wavenumber vectors an
satisfy the properties

an · z = 0, |an| = a, a−n = −an. (10)

The coefficients A+
n and A−n satisfy the conditions

N∑
n=−N

(A+
n A

+∗
n + A−n A

−∗
n ) = 2, A±∗n = A±−n, (11)

where the asterisk indicates the complex conjugate. Minimizing the expression for
R00, given in (9d ), with respect to the wavenumber a, we find

R00c = 2π/
√
G, ac = π. (12)

In all the analyses and solutions to follow we shall set R00 = R00c and a = ac, unless
indicated otherwise. Due to the complexity of the present oscillatory problem, we
consider a simplifying assumption by following Anderson & Worster (1995) and
focusing on a particular limiting case where K1 is small, and, in particular, we assume
that K1 is of order ε. At order δ we find the solutions V01, θ01 and φ01, whose
expressions are very lengthy and are not given in this paper. The real and imaginary
parts of the solvability condition at this order yield

R01 = 2πGt
√
G[1/4 + π2(1 + cosω01)/(π

2 − ω2
01)

2], (13a)

ω01{1 + [2π2Gt/(π
2 − ω2

01)][1− 2π2 sinω01/(π
2ω01 − ω3

01)]} = 0, (13b)

where

Gt ≡ (G− 1)/(CG2). (13c)

3.1. Travelling waves

Next, we analyse the nonlinear problem for the travelling waves. At order ε/δ, we
find ω10 = 0. At order ε the system (7a)–(7e) can be reduced to the form given by
(A1) in Appendix A. The solvability conditions for the nonlinear systems require the
following special travelling wave solutions V±00n and θ±00n of the linear system:

(V±00n, θ
±
00n) = [1/(π

√
G),−1] sin(πz)(A±n η

±
n + c.c.), (14)

where ‘c.c.’ indicates the complex conjugate of the preceding expression. It turns out
that there is no need to consider a special linear solution for φ since the governing
nonlinear systems are usually reduced to a form where only (14) will be needed to
form the corresponding solvability conditions. Multiplying (A 1a) by GV±00n, (A 1b) by

θ±00n, adding, applying the boundary conditions, averaging over the whole layer and
taking a time average over period 2π/ω01 yields

2|A±n |2R10 = 〈θ±00nΩV00 · ∇θ00〉, (15)

where an angular bracket indicates a total average over the layer and in time. The
right-hand side of (15) for R10 consists of sum of terms involving integrals of the form
〈η±n η±l η±p 〉, which are all zero, due to the time averaging, since each mode is oscillatory
in time. Hence R10 = 0. By the same reasoning, the solvability conditions for the
system at order εδ also yield R11 = ω11 = 0. The solution to the system (A1) is given
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by (A 2). The solution to the system at orders εδ involves very lengthy expressions
and will not be given in this paper.

The solvability conditions for the system at order ε2/δ yield ω20 = 0.
At order ε2 the system (7a)–(7e) can be reduced to the form given by (A 3). The

simplified forms of the solvability conditions for (A 3) yield

2R20|A+
n |2 =

N∑
m=−N

{(T (1)
nm + T (1)

−n,m)|A+
n |2|A+

m |2 + [T (2)
nmA

−
n A

+
−nδ(Sm − Sn)

+T (2)
−n,mA

−
−nA

+
n δ(Sm + Sn)]A

+
mA
−
−m + (T (3)

nm + T (3)
−n,m)|A+

n |2|A−m |2
+[T (4)

nmA
−
n A

+
−nδ(Sm + Sn) + T (4)

−n,mA
−
−nA

+
n δ(Sm − Sn)]A−mA+

−m}, (16a)

2R20|A−n |2 =

N∑
m=−N

{[T (5)
nmA

+
n A
−
−nδ(Sm − Sn) + T (5)

−n,mA
+
−nA

−
n δ(Sm + Sn)]A

−
mA

+
−m

+(T (7)
nm + T (7)

−n,m)|A−n |2|A−m |2 + [T (6)
nmA

+
n A
−
−nδ(Sm + Sn) + T (6)

−n,mA
+
−nA

−
n δ

×(Sm − Sn)]A+
mA
−
−m + (T (8)

nm + T (8)
−n,m)|A−n |2|A+

m |2}, (16b)

where

δ(S) = 1 for S = 0 and 0 for S 6= 0, (16c)

and the expressions for T (i)
nm (i = 1, . . . , 8) are given by (A 4a)–(A 4h).

The first equation in (11) and (16a)–(16b) form a system of (4N + 1) equations for
(4N + 1) unknowns A+

n , A−n and R20 (n = −N, . . . ,−1, 1, . . . , N). This system can be
used to study the solutions in the form of travelling waves, where A+

n 6= A−n for at
least one n.

Simple travelling waves

The left-(right-) travelling wave solutions of (11) and (16a)–(16b) are given below
in the so-called ‘regular’ case, in which all angles between two neighbouring a-vectors
are equal:

|A−1 | = · · · = |A−N | = 0(|A+
1 | = · · · = |A+

N | = 0),

|A+
1 |2 = · · · = |A+

N |2 = 1/N(|A−1 |2 = · · · = |A−N |2 = 1/N),

2R(st)
20 = (1/N)

N∑
m=1

(T (st)
1m + T

(st)
1,−m),

 (17a)

where R(st)
20 denotes the expression for R20 for these simple travelling wave solutions

and

T (st)
nm = T (1)

nm + T (1)
−n,m. (17b)

Solutions (17a) also hold for the so-called ‘semi-regular’ type solutions, where the
scalar product between any one of the a-vectors and its two neighbouring a-vectors
assumes the constant values α1 and α2. Regular solutions follow from the semi-regular
ones for the special case α1 = α2 (Busse 1967). The simplest form of such solutions
corresponds to the case of left-(right-) travelling rolls where

N = 1, R
(st)
20 = (1/2)(T (st)

11 + T
(st)
1,−1), |A+

1 |2 = 1(|A−1 |2 = 1). (18)
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As indicated by (17a) and (18) and consistent with the symmetry property of the
present problem, the expression for R(st)

20 for the left-travelling waves is the same as
that for the right-travelling waves.

General travelling waves

The semi-regular solutions of (16a) and (16b) for the case of general travelling
waves are

A+
1 = · · · = A+

N = [(0.5− b)/N]0.5, A−1 = · · · = A−N = [(0.5 + b)/N]0.5,

R
(gt)
20 = {R(st)

20 [(0.5 + b)1.5 + (0.5− b)1.5]/[(0.5 + b)0.5

+(0.5− b)0.5]}+ (0.25− b2)0.5(2R(s)
20 − R(st)

20 ),

 (19a)

where b is a positive constant in the range

−0.5 < b < 0.5, (19b)

whose value specifies the particular travelling wave solution. Here R
(gt)
20 and R

(s)
20

denote, respectively, the expressions for R20 for such solutions in the cases of a
general travelling wave and standing wave. The expression for R(s)

20 will be given

in the next subsection. It can be seen from (19a) that, as expected, R(gt)
20 = R

(s)
20 for

b = 0, and R(gt)
20 = R

(st)
20 in the limit of either b = −0.5 or b = 0.5.

3.2. Standing waves

The analysis provided in the previous subsection for the travelling waves can be
carried out in a similar manner for the standing waves, which is briefly presented in
the following paragraphs.

For the standing wave solutions, where A+
n = A−n for every n, the special linear

solution, which is used to form the solvability conditions, must itself be standing
wave of the form

(V00n, θ00n) = (V+
00n + V−00n, θ

+
00n + θ−00n), A

+
n ≡ A−n ≡ An, (20)

instead of (14). Consequently, the resulting solvability conditions at orders ε/δ, ε, ε2/δ
and ε2 yield, respectively, ω10 = 0, R10 = 0, ω20 = 0 and

4AnR20 =

N∑
m=−N

{(T (1)
nm + T (1)

−n,m + T (3)
nm + T (3)

−n,m + T (7)
nm + T (7)

−n,m + T (8)
nm + T (8)

−n,m)

+(T (2)
nm + T (4)

−n,m + T (5)
nm + T (6)

−n,m)δ(Sm − Sn) + (T (2)
−n,m + T (4)

nm + T (5)
−n,m + T (6)

nm )

×δ(Sm + Sn)}|Am|2An, (21)

which is the sum of (16a) and (16b) after the identity in (20) is used. The system (21)
together with

N∑
m=−N

|Am|2 = 1, (22)

which is derived from (11), consists of (2N + 1) equations for (2N + 1) unknowns R20

and An(n = −N, . . . ,−1, 1, . . . , N).
The semi-regular solutions of (21) and (22) are

|A1|2 = · · · = |AN |2 = 1/(2N), 4R(s)
20 =

1

2N

N∑
m=1

(T (s)
1m + T

(s)
1,−m), (23a)
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where

T (s)
nm = (T (1)

nm + T (1)
−n,m + T (3)

nm + T (3)
−n,m + T (7)

nm + T (7)
−n,m + T (8)

nm + T (8)
−n,m)

+(T (2)
nm + T (4)

−n,m + T (5)
nm + T (6)

−n,m)δ(Sm − Sn) + (T (2)
−n,m + T (4)

nm + T (5)
−n,m + T (6)

nm )

×δ(Sm + Sn). (23b)

The simplest form of such solutions corresponds to the case of standing rolls, where

N = 1, R20 = (1/8)(T (s)
11 + T

(s)
1,−1), |A1|2 = 1/2. (24)

4. Stability analysis
The analysis of the finite-amplitude oscillatory convection presented in the previous

section has shown that an infinite manifold of solutions could exist even though this
manifold represents only an infinitesimal fraction of the manifold of the solutions
(9a)–(9c) of the linear problem. To distinguish the physically realizable solution from
among all possible oscillatory solutions, the stability of V , θ, φ with respect to arbitrary
three-dimensional disturbances Vd, θd, φd must be investigated. The time-dependent
disturbances can be assumed to be in the form

(Vd, θd, φd) = [V ′(x, y, z, t), θ′(x, y, z, t), φ′(x, y, z, t)] exp(σt), (25)

where σ is the growth rate of the disturbances. When the governing equations and the
boundary conditions of the form (7a)–(7e) for the finite-amplitude oscillatory flow
are subtracted from the corresponding equations and boundary conditions for the
total dependent variables for the oscillatory flow and the disturbance quantities, and
the resulting system is linearized with respect to the disturbance quantities, we obtain
the following stability system:

∇2

[
εφ′
(

d

dφ̃

)
K(φB + εφ)∆2V +K(φB + εφ)∆2V

′
]

+

(
∂

∂z

)
×
{
εΩV · ∇

[
φ′
(

d

dφ̃

)
K(φB + εφ)

]
+ΩV ′ · ∇K(φB + εφ)

}
− R∆2θ

′ = 0,

(26a)

(
∂

∂t
+ σ − δ∂

∂z

)(
−θ′ + Sφ′

δ

)
+ R

(
dθB
dz

)
∆2V

′ + ∇2θ′

= εR(ΩV · ∇θ′ +ΩV ′ · ∇θ), (26b)

(
∂

∂t
+ σ − δ∂

∂z

)[
(−1 + φB)θ′ + θBφ

′ + εφθ′ + εφ′θ − Cφ′

δ

]
+ R

(
dθB
dz

)
∆2V

′

= εR(ΩV · ∇θ′ +ΩV ′ · ∇θ), (26c)

V ′ = θ′ = 0 at z = 0, (26d)

V ′ = θ′ = φ′ = 0 at z = 1. (26e)

When expansion (8) is used in (26a)–(26e) it becomes evident that the stability system
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can be solved by a similar expansion

(V ′, θ′, φ′, σ) = [(V ′00 + δV ′01 + · · ·), (θ′00 + δθ′01 + · · ·), (φ′00 + δφ′01 + · · ·),
(σ00 + δσ01 + · · ·)] + ε[(V ′10 + δV ′11 + · · ·), (θ′10 + δθ′11 + · · ·),
(φ′10 + δφ′11 + · · ·), (σ10 + δσ11 + · · ·)] + ε2[(V ′20 + δV ′21 + · · ·),
(θ′20 + δθ′21 + · · ·), (φ′2(−1)/δ + φ′20 + δφ′21 + · · ·), (σ20 + δσ21 + · · ·)] + · · · , (27)

where the expansion for φ′ is singular at order ε2 as δ → 0, but it turns out that
the O(1/δ) term is needed in the stability analysis since the O(ε2) stability problem is
found to be forced by a term of order 1/δ in the solute equation for the disturbances.

We also restrict ourselves to those disturbances whose dependent variables V ′,
θ′, φ′ have wavenumbers a′ = ac and frequencies ω′ = ωc. Then the most critical
disturbances, which have the maximum growth rate, are found to be characterized by
σ0 = 0, where

σ0 = σ00 + δσ01 + · · · .
The linear solutions for the dependent variables of the disturbances at order δ0 are
found to be of the form (9a)–(9c), provided A±n and N are replaced by arbitrary
constants Ã±n and ∞, respectively.

In analogy to the solvability conditions for the oscillatory motion presented in
the previous section, the solvability conditions for the disturbance systems at order
εn (n > 1) require us to define two independent particular solutions of the linear
system for the disturbances. These solutions, designated either by Ṽ±00n and θ̃±00n or

by Ṽ 00n and θ̃00n, have the same form as either (14) or (20), provided that the A±n
are replaced by Ã±n . The solvability conditions for the disturbance system at order
ε are derived similarly to the corresponding ones for the oscillatory flow system.
Similarly to the result for R10 presented in the previous section, we found that the
expression for σ10 obtained from these solvability conditions consisted of sum of
terms involving integrals of the form 〈η±n η±l η±p 〉, which are all zero again due to the
time averaging, and so σ10 = 0. Application of this procedure to disturbance systems
at orders εδm(m > 1) then implies that σ1m = 0. The solution to the order ε of the
disturbances is given by (B1) in the Appendix B.

At order ε2/δ the system (26) yields(
∂

∂t1
− ∂

∂z

)
φ′2(−1) = −σ20φ

′
00, (28a)

φ′2(−1) = 0 at z = 1, (28b)

where t1 is defined in (A1) (Appendix A).
The solution to (28a) and (28b) is of the form

φ′2(−1) =

∞∑
n=−∞

[f̃n(z)Ã
+
n η

+
n + f̃∗n(z)Ã

−
n η
−
n ]σ20, (29a)

where

f̃n(z) =

(
2π2

[CG(π2 − ω2
01)

2]

)
{−(π2 + ω2

01) sin(πz) + 2iπω01Sn[cos(πz)

+ exp(iω01Snz − iω01Sn)] + ππ2 − ω2
01)(1− z) exp[iω01Sn(z − 1)]}. (29b)

At order ε2 the system (26a)–(26e) can be reduced to the form given by (B 2) in
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the appendix B. Solvability conditions for the system (B 2) yield a set of equations
involving σ20 which is given by (B 3a).

Standing waves

Using (16) in (B 3a) and considering first standing wave disturbances acting on the
standing waves, we find

2S0σ20Ãn + An

N∑
m=−N

T̃ (s)
nmA

∗
mÃm = 0, (30a)

where

Ãn ≡ Ã+
n + Ã−n , T̃ (s)

nm = T (s)
nm + T (s)

n,−m. (30b)

Using (23b) and (A 4) in (30a), we find that the matrix T̃ (s)
nm has the following

symmetries:

T̃ (s)
nm = T̃ (s)

mn = T̃ (s)
n,−m = T̃ (s)

−n,m, (31a)

T̃ (s)
nn = T̃

(s)
11 (n = −N, . . . ,−1, 1, . . . , N). (31b)

Using (31) and following either Schluter, Lortz & Busse (1965) or Busse & Riahi
(1980), we find that N eigenvalues σ20 of (30) are zero and the rest of the eigenvalues
are real and satisfy the characteristic equation

det |2S0σ20δnm + T̃ nmA−mAn| = 0 (n, m = 1, . . . , N), (32a)

where

δnm = 1 for n = m and 0 for n 6= m. (32b)

Equation (32a) is a polynomial equation in σ20 of degree N of the form

N∑
n=0

bnσ
n
20 = 0, (33a)

where

bN = (2S0)
N, (33b)

bN−1 =

N∑
m=1

T̃ (s)
nn |An|2, (33c)

bN−2 =

N∑
n,m=1(m>n)

(T̃ (s)
nnT̃

(s)
mm − T̃ (s)

nmT̃
(s)
mn)|AnAm|2. (33d)

Our calculation of S0 for various values of G and Gt, which is presented in Appendix B,
indicates that S0 is positive. Hence bN is positive. Using (20a) and (B 3b), we find that

bN−1 = 4R20 (34)

for rolls. As the results in the § 5 indicate, the value of R20 for standing rolls is positive.
Hence bN−1 is positive. Since all the roots of (33a) are real and the coefficients bN and
bN−1 are both positive, we conclude from the sign rule of Descarts for polynomials
that at least one root of (33a) is positive, provided that the coefficient bN−2, given by
(40d ), is negative. Hence a three-dimensional standing wave is unstable if

bN−2 < 0. (35)
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The inequality (35) clearly holds if

T̃ (s)
nm > T̃ (s)

nn > 0 (m > n). (36)

For two-dimensional flow in the form of standing rolls (N = 1), (32) yield

2S0σ20 = −4R20. (37)

Hence σ20 < 0 and standing rolls are stable.

Simple travelling waves

Considering left-(right-) travelling wave disturbances acting on the finite-amplitude
motion in the form of left-(right-) travelling waves, we find that the results (30)–
(37) can be applicable for such motion, provided An, Ãn, 2S0 and T̃ (s)

nm are replaced,
respectively, by A+

n (A−n ), Ã+
n (Ã−n ), S0 and T̃ (st)

nm , where

T̃ (st)
nm = T (st)

nm + T (st)
n,−m. (38)

General travelling waves

Considering general travelling wave disturbances acting on the oscillatory motion
in the form of the general travelling waves already introduced, we find that the results
(30)–(37) are applicable for such motion, provided An, Ãn and T̃ (s)

nm are replaced,
respectively, by [(0.5− b)/N]0.5, Ã+

n and T̃ (gt)
nm , where

T̃ (gt)
nm = T (gt)

nm + T (gt)
n,−m, (39a)

T (gt)
nm = (T (1)

nm + T (1)
−n,m) + (T (2)

nm + T (4)
−n,m)

[
0.5 + b

0.5− b
]
δ(Sm − Sn) + (T (2)

−n,m + T (4)
nm )

×
[

0.5 + b

0.5− b
]
δ(Sm + Sn) + (T (3)

nm + T (3)
−n,m)

[
0.5 + b

0.5− b
]

+ (T (5)
nm + T (6)

−n,m)

×
[

0.5 + b

0.5− b
]0.5

δ(Sm − Sn) + (T (5)
−n,m + T (6)

nm )

[
0.5 + b

0.5− b
]0.5

δ(Sm + Sn)

+(T (7)
nm + T (7)

−n,m)

[
0.5 + b

0.5− b
]1.5

+ (T (8)
nm + T (8)

−n,m)

[
0.5 + b

0.5− b
]0.5

. (39b)

Inclined disturbances

So far the analysis has been restricted to disturbances whose wavenumber vectors
coincide with those of the oscillatory motion. We now consider the stability of the
oscillatory motion with respect to disturbances in the form of rolls whose wave
number vectors are inclined with respect to any wavenumber vector of the oscillatory
motion. The horizontal dependence of V ′00 and θ′00 for such disturbances can be
written as

1∑
r=−1

Ã+
r η̃

+
r + Ã−r η

−
r , η̃±r ≡ exp(iãr · r ± iω01t1). (40)

Here the wavenumber vector ãr of such disturbances satisfies properties of the form
(10). For such disturbances, solvability conditions for (B 2) in Appendix B can be
simplified to those given by (B 4).

The growth rate σ20, given by (B 4), for inclined disturbances in the form of either
standing rolls or travelling rolls, acting on the finite-amplitude oscillatory motion, can
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Figure 1. The frequency ω01 and the critical value of the scaled Rayleigh number RC versus Gt. A
number just below a curve labels the curve. Curve 1 shows ω01. Curves 2, 3, 4 and 5 shows RC and
correspond respectively, to G = 1.01, 2.0, 4.0 and 8.0.

then be determined for various values of the angle of the inclination between ãr and
the wavenumber vectors an of the oscillatory motion.

5. Results and discussion
5.1. Linear problem

The linear system and its eigenvalue problem, which led to the results (9)–(14), are, in
general, functions of the two parameters G and Gt. These two parameters are related
to the scaled Stefan number S and the scaled compositional ratio C as given in (4a)
and (13c). Given S and C , G and Gt can be determined uniquely and vice versa.
The results provided in this paper are given as functions of G and Gt since these
parameters are found to be particularly relevant for the oscillatory system as was also
noted earlier by Anderson & Worster (1996) for their linear system. The results for
the frequency ω01 of the oscillatory motion and for RC , given by

RC = R00c + δR01 + O(δ2), (41)

as functions of Gt and for given values of G are presented in figure 1. Since ω01 was
found to be rather insensitive to G, at least in the range 1.01 6 G 6 8.0, its values as
function of Gt are presented in the figure 1 for a given value of G in this range. Here,
and thereafter, the value of δ = 0.2 is chosen to evaluate RC and other quantities
whose values may depend on δ. It is seen from the results presented in this figure
that ω01 increases with Gt and has a rather high rate of increase with respect to
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Gt in the range 0.7 6 Gt 6 1.0. RC generally increases with Gt and increases with
decreasing G. Since S represents a measure of the latent heat relative to the heat
content and C represents the difference between the characteristic compositions of
the solid and liquid phases and the compositional variation of the liquid, the linear
system is destabilized as S increases, for a given C , or as C decreases, for a given S .
Hence, the linear system is destabilized as G increases. To uncover some non-trivial
effects of the competing parameters S and C , or Gt and G, on the linear flow system,
we make the following observations based on the results presented in figure 1. Since
Gt increases with decreasing C , for a given G, then S has to decrease by the same rate
as C in order to maintain the value of G. It is also seen from the figure 1 that RC
increases with Gt for a given G, so that the linear system is stabilizing as Gt increases
for a given G. Hence, the Stefan number is more effective than the compositional ratio
C in stabilizing the flow as Gt increases. For a given Gt, RC generally decreases with
increasing G, provided Gt is not too large. Since S increases with G and C decreases
with increasing G for G > 2.0, then the destabilizing effect on the linear system is
understandable and again implies that the Stefan number is more effective than the
compositional ratio. It can also be seen from the results presented in figure 1 that the
parameter Gt appears to be, in a sense, more effective than G since for sufficiently
large Gt, the flow at a larger G can be more stable than the one at a relatively
smaller G.

5.2. Nonlinear problem

An important quantity due to the nonlinear effects is the coefficient R20. As can be
seen from the expansion (8), R20 represents a contribution to the change in R required
to obtain given finite amplitude ε for a nonlinear solution. As shown in § 3, there is
no term linear in ε in the expansion for R, and, thus, the amplitude of the convection
is of order

ε = ±[(R − Rc)/R20]
1/2. (42)

The sign of R20 determines whether the oscillatory solution exists for values of R above
or below Rc. For supercritical convection, where R > Rc, the amplitude of convection
is largest, provided the value of R20 is smallest among all the solutions to the nonlinear
problem. In the present problem R20 is due to both nonlinear convective terms in
the temperature equation given in (A 3) and the nonlinear interactions between the
flow velocity and the non-uniform and nonlinear permeability associated with the
perturbation to the basic-state solid fraction.

The coefficients R20, given by (21a) and (23a) for the standing rolls and simple
travelling rolls, respectively, were computed for various values of G, Gt and K2. It
was found that R20 is positive, and, thus, these oscillatory rolls are supercritical. Some
typical results are presented in figure 2 for R20 versus Gt and for two different values
of G and K2 in the case of rolls. Since the preferred mode is anticipated to have the
smallest value for R20 among all the possible modes, then the results presented in the
figure 2 indicate that simple travelling rolls are probably preferred over the standing
rolls in most of the range of values for the parameters G, Gt and K2, except in a
narrow and relatively small range of values for Gt where standing rolls are probably
preferred over the simple travelling rolls. Our stability results, to be presented in the
next subsection, confirm these anticipations. It is seen that both simple travelling and
standing modes are stabilized as Gt increases. Typical results on the variation of R20

with respect to G, Gt and K2 are presented in figures 3 and 4. Figure 3 presents R20

versus Gt for simple travelling rolls and K2 = 0.15 and for G = 2.0, 4.0 and 8.0. It is
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Figure 2. R20 versus Gt for rolls. R20 for standing rolls (s) and simple travelling rolls (t) are plotted
for G = 2.0 and K2 = 0.05 (s1, t1), and for G = 4.0 and K2 = 0.1 (s2, t2).
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Figure 3. R20 versus Gt for simple travelling rolls. K2 = 0.15, and graphs labelled 1, 2 and 3

present, respectively, R(st)
20 for G = 2.0, 4.0 and 8.0.
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Figure 4. R20 versus Gt for simple travelling rolls. G = 2.0, and graphs labelled 1, 2 and 3 present,

respectively, R(st)
20 for K2 = 0.01, 0.05 and 0.10.

seen from this figure that the simple travelling mode is stabilized with increasing G.
Our other data indicated that the same qualitative result also holds for the standing
rolls. Figure 4 presents R20 versus Gt in the case of simple travelling rolls for G = 2.0
and K2 = 0.01, 0.05 and 0.10. It is seen from this figure that the simple travelling
mode is stabilized with increasing K2(K2 > 0) and the rate of stabilization of the
mode with respect to Gt decreases with decreasing K2. Our other data indicated that
the same qualitative result also holds for the standing rolls. The result in the limit
of K2 = 0 is not shown in these figures, but it was found that the simple travelling
and standing rolls are independent of Gt and are destabilized with increasing G in
the limit of zero K2.

The nonlinear results presented in the previous paragraph are consistent with the
physical properties of the parameters G, Gt and K2. As discussed in the previous sub-
section and generally in agreement with the linear results, increasing G is destabilizing,
while increasing Gt is generally stabilizing. Hence, R20 generally decreases with either
increasing G or decreasing Gt. For the oscillatory modes, it should be noted that
K2 represents a leading-order effect of the inverse of the permeability of the mushy
layer in the present problem. It is associated with the curvature in the K(φ̃) relation
and is usually positive. The permeability decreases with increasing K2. Thus, the flow
is stabilized as K2 increases and destabilized as K2 decreases. Hence, R20 increases
with K2.

It should be noted that since the solute flux, or equivalently here the heat flux
H = 〈θ̃ũ · z〉, is proportional to square of ε given by (42), to the leading-order, then H
is inversely proportional to R20, and the flow solution with the smallest value of R20
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transports the maximum amount of heat or solute to the leading-order. In addition,
in direct analogy to the case of stationary thermal convection in planar layers (Busse
1967), one can expect that the preferred nonlinear oscillatory solutions, in the limit
of small ε, correspond to those that represent the smallest value of R20, in the limit
of small δ, among all the solutions admitted by the solvability conditions (16a).

Using (17) and (23), the coefficients R(st)
20 and R

(s)
20 for oscillatory squares (N = 2)

and oscillatory hexagons (N = 3) were computed for various values of G, Gt and K2.
As in the case of rolls, it was found that R(st)

20 and R
(s)
20 are positive for squares and

hexagons, with either upward flow at the cell centres (up-hexagons) or downward
flow at the cell centres (down-hexagons), and their values for R20 are generally larger
than the corresponding values for the oscillatory rolls. Thus, similarly to the case
of oscillatory rolls, it was found that the three-dimensional simple travelling wave
and standing wave solutions in the forms of squares and hexagons are supercritical.
Although no rigorous proof has been found, it is likely that the above results for
N < 4 are also generally applicable to the N > 4 cases.

The coefficient R(gt)
20 , given by (19a), for the semi-regular solutions in the form of

general travelling waves indicates that R(gt)
20 is symmetric with respect to b = 0, where

b = 0 corresponds to the case of standing waves. This result implies that, for a given
|b| in the range (19b), there are always two sets of general travelling waves with equal
stability properties. In addition, it is found from (19a) that

R
(gt)
20 > R

(st)
20 for R

(s)
20 > R

(st)
20 , (43a)

R
(gt)
20 > R

(s)
20 for R

(st)
20 > R

(s)
20 , (43b)

R
(gt)
20 = R

(s)
20 for R

(st)
20 = R

(s)
20 . (43c)

Hence, all the general travelling waves in the range (19b) for b are supercritical. In
addition, the results (43a)–(43c) imply that general travelling waves are not expected
to be preferred, in general, due to (43a) and (43b), unless (43c) holds at some singular
values in the parameter space where mixed modes consisting of general travelling
waves, standing waves and simple travelling waves can all coexist.

We also examined the vertical distribution of the solid fraction at different locations
in the horizontal direction and in time for the solutions in the form of oscillatory rolls
parallel to the x-axis. Some typical results are presented in figures 5 and 6 for the
vertical distribution of the solid fraction in the cases of standing and simple travelling
rolls, respectively. For these figures δ = 0.2, G = 2.0, K2 = 0, and ε = 0.002 is chosen,
which is the maximum value of ε beyond which the solid fraction becomes negative.
This is based on the physical grounds that deviation of the total solid fraction φ̃ from
φB due to convection cannot make φ̃ negative. We have chosen a zero value for K2 in
these figures since φ̃ is found to be almost insensitive to K2 at such a small value of
ε. Figure 5 presents results for the standing rolls at Gt = 0.7. It can be seen from this
figure that the solid fraction at t = 0 along the boundary between two rolls (y = 0)
decreases due to the convection in most of the layer, and (φB − φ̃) is largest and
positive at some interior point in the mushy layer away from the boundaries, which
implies that chimneys may be initiated at some location within the mushy layer. This
result is in agreement with numerical observations by Schulze & Worster (1999) in a
two-layer model for a two-dimensional steady system. However, the solid fraction at a
later time (t = 0.5) along the same boundary appears to be reduced by the convection
mostly near the lower boundary implying the possibility of chimney formation near
the lower boundary of the mushy zone at such a later time. We also found that the
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Figure 5. Solid fraction for standing rolls versus z for G = 2.0, K2 = 0 and Gt = 0.7. Here graphs
labelled by the square, circle and triangle symbols show, respectively, the basic solid fraction φB ,
φ̃(y = 0, z, t = 0) and φ̃(y = 0, z, t = 0.5).

solid fraction at both t = 0 and 0.5 along the centreline line (y = 0.5) is close to the
basic solid fraction φB throughout the depth of the mushy layer, which implies that
it is unlikely that chimneys can be initiated along the centreline at these two instants
in time. Figure 6 presents results for the right-travelling rolls at Gt = 0.1. It can be
seen from this figure that the solid fraction at t = 0 along the centreline (y = 0.5)
increases due to the convection and its maximum value occurs at some region near the
lower boundary, while the solid fraction at a later time (t = 0.5) along the centreline
decreases due to the convection mainly away from the upper boundary. We also
found that the solid fraction at t = 0 along the boundary between two rolls was close
to that along the centreline at t = 0.5 throughout the depth of the layer. Additional
calculated data indicated similar features regarding chimney initiation in most of the
layer in the case of convection in the form of left-travelling rolls. A common feature
of these results is that chimneys may be initiated at some location within the layer
or near the lower boundary but probably not near the upper boundary of the layer.

To discuss the physical interpretation of the results on the solid fraction distribution
described in the previous paragraph, it is appropriate to describe briefly first the results
determined by Anderson & Worster (1996) on the structure of a travelling mode in the
linear regime, which were in agreement with our calculated data for the travelling rolls.
In contrast to the steady-state case, where the perturbations to the solid fraction lead
to vertical chimneys of reduced solid fraction and vertically oriented compositional
stripes, due to the variation in the solid fraction at the lower boundary (Anderson
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Figure 6. Solid fraction for simple travelling rolls versus z for G = 2.0, K2 = 0 and Gt = 0.1.
Here graphs labelled by the square, circle, triangle and filled circle symbols show, respectively, φB ,
φ̃(y = 0.5, z, t = 0), φ̃(y = 0.5, z, t = 0.5) and φ̃(y = 0, z, t = 0.5).

& Worster 1995), the chimneys and the compositional strips in a travelling wave
state can be inclined. The non-vertical directions are due to the non-zero values of
the phase speed of such a wave relative to the uniform upward speed of the mushy
layer, and, consequently, the chimneys develop variable slopes relative to the vertical
direction. Furthermore, the chimneys away from the boundaries are mostly within a
roll, rather than between two convection rolls as in the steady-state case. These main
differences in the orientations of the chimneys and the compositional strips in the
steady-state and the oscillatory-state cases are due to the fact that the solid-fraction
perturbation is out of phase with the thermal and flow fields in the oscillatory case,
while the solid-fraction perturbation is in phase with the flow and thermal fields in the
steady case. In the present nonlinear oscillatory problem, the non-vertical features of
the chimneys and the compositional strips still persist in the parameter regime where
the simple travelling rolls are stable. In the parameter regime where the standing rolls
are stable, the chimneys and the compositional strips are in the vertical direction
since the phase speed of these rolls is zero, but the vertical extent of the chimneys
may vary depending on the variation of the solid-fraction perturbation with respect
to time.

5.3. Stability problem

Condition (35) has been computed numerically for different integers N and various
values of ψnm(|ψnm| 6 1). In all cases of N > 1 and ψnm that have been investigated
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Figure 7. Regions of stable and preferred oscillatory modes of convection in the (Gt, G)-plane for
different values of K2. The stability boundaries labelled by the circle, square and triangle symbols
correspond respectively, to K2 = 0.07, 0.05 and 0.01. For a given K2, standing rolls are stable in
the small region bounded by the stability curve, while simple travelling rolls are stable outside that
region.

condition (35) was found to be valid for three-dimensional oscillatory solutions in
the form of standing waves, general travelling waves and simple travelling waves.
Hence, all the three-dimensional solutions of such forms are unstable. Using (B 4), the
growth rates for the inclined disturbances, acting on the two-dimensional oscillatory
solutions, are computed at various values of Ψr1. Disturbances in the form of standing
waves, general travelling waves and simple travelling waves acting on the oscillatory
flow in the form of standing rolls, general travelling rolls and simple travelling rolls
were studied. The results of such studies and computation indicated that, depending
on the parameter values for G, Gt and K2, only oscillatory rolls in the form of either
simple travelling rolls or standing rolls, which correspond to the smallest associated
R20 coefficient, are stable with respect to such disturbances. Hence, among all the
two- and three-dimensional oscillatory solutions to the nonlinear problem, only simple
travelling rolls or standing rolls are stable and, thus, preferred depending on the range
of values for G, Gt and K2.

Figure 7 presents stability regions of the preferred solutions in the (Gt, G)-plane
for different values of K2. The stability boundaries for the cases of K2 = 0.07, 0.05
and 0.01 are shown by a circle, a square and a triangle, respectively. These stability
boundaries are all closed curves and their lower parts lie on the Gt-axis. Standing
rolls are stable in a rather small region, designated here by D(K2), which is bounded
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Figure 8. Bifurcation diagram in the (R, ε)-plane. Here solid lines are stable branches, while dashed
and dashed-dot lines are unstable branches. The dashed-dot curve corresponds to general travelling
rolls. The solid curve corresponds to the stable standing (simple travelling) rolls inside (outside) the
small region D(K2), while the dashed curve corresponds to the unstable standing (simple travelling)
rolls outside (inside) D(K2).

by the stability curve, for a given K2, while simple travelling rolls are stable outside
the region D(K2). The stability region D(K2) for the standing rolls shrinks to zero
in the limit of K2 = 0, and simple travelling rolls become the only stable flow
pattern in this case. Thus, the region in the (Gt, G)-plane for the stable (unstable)
simple travelling rolls (or unstable (stable) standing rolls) decreases (increases) with
increasing K2. These results are consistent with the destabilizing effect of larger
permeability on the standing rolls. Figure 8 presents a qualitative bifurcation diagram
for the oscillatory rolls in the (R, ε)-plane. Here solid lines are stable branches, while
dashed and dashed-dot lines are unstable branches. The dashed-dot curve corresponds
to unstable general travelling rolls. For any values of G and Gt, inside (outside) D(K2),
the solid curve corresponds to the standing (simple travelling) rolls, while the dashed
curve corresponds to the simple travelling (standing) rolls. For R < RC , the only
stable solution is that of the conduction state represented by the solid line portion of
the R-axis in figure 8. It is seen from this diagram that the oscillatory rolls are all
supercritical and no sub-critical branch exists in the present problem.

6. Conclusion and some remarks
We have investigated the problem of nonlinear oscillatory convection in a horizontal

mushy layer during alloy solidification. We analysed the two- and three-dimensional
oscillatory modes of convection in the mushy layer using the model due to Amberg
& Homsy (1993) and its extended form as studied by Anderson & Worster (1995).
We performed a weakly nonlinear analysis to determine the finite-amplitude oscilla-
tory solutions admitted by the nonlinear problem and carried out stability analyses to
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determine the finite-amplitude solutions that are stable with respect to arbitrary three-
dimensional disturbances. We found that all the three-dimensional finite-amplitude
solutions in the form of travelling and standing waves are unstable. However, de-
pending on the range of values of the parameters, two-dimensional finite-amplitude
solutions in the form of either simple travelling rolls or standing rolls are found to
be stable and, thus, preferred in a particular domain in the parameter space, while
general travelling rolls were found to be unstable. We found that the simple travelling
rolls are supercritical and stable over most of the domain in the parameter space.
Standing rolls were also found to be supercritical but are stable only in a rather
small region in the parameter space where the simple travelling rolls are unstable.
No hysteretic effect and sub-critical solutions were found. Our results on the onset of
plume convection and chimney formation within the mushy layer indicated that the
chimney of the plume could be initiated internally or near the lower boundary. We
found that the direction and the extent of chimneys can depend on the form of the
preferred oscillatory rolls.

It should be noted that, as in the case of the stationary mode of convection noted
by Anderson & Worster (1995), the quantitative conclusions of the present study may
be altered by using a more sophisticated model such as a two-layer model of the
type due to Worster (1992). For example, investigation of the present problem in a
two-layer model of a liquid region overlying a mushy region may lead to the result
that the stability boundary between the standing rolls and the simple travelling rolls
may shift somewhat relative to the present result. However, the qualitative results of
our studies, such as the preference of simple travelling rolls and standing rolls over
the rest of the solutions should remain unchanged.

In the present work we identified a physical effect associated with the possibility of
convection in the form of standing rolls, namely that due to the nonlinear permeability
variations associated with the perturbations to the basic-state solid fraction. Based
on this effect, our theory predicted stable standing rolls in a small region of the
parameter space. In the absence of this physical effect, which is equivalent to the case
of uniform permeability seen by the solidification system, simple travelling rolls are
the only stable flow pattern throughout the entire (Gt, G)-plane.

Similar to the assumption of small K1 made by Anderson & Worster (1995),
we also considered a parameter regime, where in the present case K1 = O(ε), so
that the stable solutions bifurcate supercritically. In the stationary convection case,
Amberg & Homsy (1993) showed that when K1/C > 0.226 the steady roll branch
bifurcates subcritically. In the present work the assumption K1 = O(ε) does not allow
any contribution of K1 to the orders that are computed, but we speculate that the
assumption of order-one values of K1 may lead to the result that R20 < 0, which can
be consistent with the similar physical effect as explained in Amberg & Homsy (1993)
for the non-oscillatory convection case.

In regard to the range of values of the parameters G and Gt considered in this
paper, it should be noted that, as also uncovered by Anderson & Worster (1996) from
their linear results, the features of the oscillatory motion appeared to be explained
more directly and easily as functions of G and Gt rather than S and C . The range of
values of G and Gt which were used to present the results in this paper, was found
to correspond to the cases where the oscillatory modes can be distinctly identified
and are preferred, in contrast to the non-oscillatory modes, which correspond to
distinctly higher RC values. Although it has been of interest to consider the range
of values of G and Gt which could cover those of the available experimental studies
(Tait et al. 1992) (G ≈ 1.25, Gt ≈ 0.04), we found that such values of G and Gt lead
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to a convection domain where the critical value of R for the onset of oscillatory
convection R

(o)
C , is too close to the critical value, of R for the onset of stationary

convection, R(s)
C , and, hence, such values of G and Gt were not appropriate to present

the results in this paper, though they are relevant for the results to be presented in
the part 2.

The nonlinear study of stationary convection in mushy layers due to Anderson &
Worster (1995) provided some results which helped to stimulate the present study
and facilitated some of the selection of the parameter values for the present in-
vestigation. Anderson & Worster (1995) investigated possible stationary modes and
solutions in the form of steady rolls and steady hexagons. They derived an evo-
lution equation for the amplitude coefficients of such solutions, and their stability
analysis for these solutions was based on that evolution equation. They considered
the case of small K1. Their analysis of the steady convection revealed the presence
of an oscillatory instability, which was due to an unsuspected interaction between
convection and solidification that can occur within the mushy layer. They reported
that the point at which the coefficient of the time derivative term in their evolu-
tion equation vanishes corresponds to the appearance of the oscillatory mode at the
minimum of the neutral stability curve for the real mode. However, their analysis
treated only cases away from this point and considered only non-oscillatory solu-
tions of their evolution equation in the form of steady rolls and steady hexagons.
They also found that the existence of the oscillatory instability and the possibility of
stable down-hexagons were associated with similar regions in the parameter space.
They found that stable down-hexagons could not be obtained when K2 > 0.131.
It should be noted that the preference for stable down-hexagons has been of in-
terest in relation to some available experimental evidence (Tait et al. 1992) where
such flow pattern was observed in the flow of 28% ammonium chloride solution
solidified from its base in a square tank. However, for the reasons stated in the
previous paragraph, an appropriate model, which could be more relevant for com-
parison of its predicted results to those due to experimental observation, should
take into account a combination of both oscillatory and non-oscillatory modes of
convection in both nonlinear and stability analyses of the type carried out in the
present paper. As stated in § 1, Part 2 takes into account the combination of both
oscillatory and non-oscillatory modes and the results presented here form the basis for
part 2.

An objective of part 2 is to determine the stable modes and their contributions
to the preference of the experimentally observed down-hexagons (Tait et al. 1992).
Some preliminary results of part 2 indicate that the contribution of the combination
of two wavenumber vectors of the oscillatory modes and one wavenumber vector of
the stationary modes to form the stable hexagons can enhance the preference for the
down-hexagon regime much beyond that already detected in a stationary state system
(Anderson & Worster 1995).

Appendix A
The system of equations and boundary conditions at order ε are given below

∆2(−∇2V10 + R00θ10 + R10θ00) = 0, (A 1a)

∇2θ10 + G(R00∆2V10 + R10∆2V00 + R00ΩV00 · ∇θ00) = 0, (A 1b)
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S

[(
∂

∂t1

)
−
(
∂

∂z

)]
φ10 + ∇2θ10 + R00∆2V10

= −R10∆2V00 −
(
S
ω11

ω01

)
∂φ00

∂t1
+ R00ΩV00 · ∇θ00, (A 1c)

V10 = θ10 = 0 at z = 0, (A 1d)

V10 = θ10 = φ10 = 0 at z = 1, (A 1e)

where

t1 = ωt/ω01.

The solutions to the above system, which holds for R10 = ω11 = 0 (see § 3), are

(V10, θ10, φ10) =

N∑
l,p=−N

{[sin(2πz)F1(ψlp), sin(2πz)F2(ψlp), cos(2πz)F3(ψlp)]

× (A+
l η

+
l + A−l η

−
l )(A+

p η
+
p + A−p η

−
p ) + [0, 0, i sin(2πz)F4(ψl,p)

× (A+
l η

+
l + A−l η

−
l )(A+

p η
+
p − A−p η−p )]}, (A 2a)

where

ψlp =
al · ap
π2

,

F1(ψlp) =−(1− ψlp)/[2π√G(ψ2
lp + 4ψlp + 7)],

F2(ψlp) = (1− ψlp)(3 + ψlp)/(2ψ
2
lp + 8ψlp + 14),

F3(ψlp) = [2π3/(CG)](1− ψlp)/[4π2 − ω2
01(Sl + Sp)

2],

F4(ψlp) = [π2/(CG)]ω01(1− ψlp)(Sl + Sp)/[4π
2 − ω2

01(Sl + Sp)
2].


(A 2b)

The system of equations and boundary conditions at order ε2 is

∆2(−∇2V20 + R00θ20 + R20θ00)

=

(
∂

∂z

)
[K̃1ΩV00 · ∇φ00 +K2ΩV00 · ∇(φ2

00)]

+∇2(K̃1φ00∆2V00 +K2φ
2
00∆2V00),

∇2θ20 + G∆2(R00V20 + R20V00) = GR00(ΩV00 · ∇θ10 +ΩV10 · ∇θ00),

S

(
∂

∂t1
− ∂

∂z

)
φ20 + ∆2(R00V20 + R20V00) + ∇2θ

= −
(
S
ω21

ω01

)
∂φ00

∂t1
+ R00(ΩV00 · ∇θ10 +ΩV10 · ∇θ00),

θ20 = V20 = 0 at z = 0, θ20 = V20 = φ20 = 0 at z = 1,



(A 3)

where K̃1 = K1/ε is an order-one constant.
The expressions for T (j)

nm (j = 1, . . . , 8) introduced in (16a) and (16b) are

T (1)
nm = (H−n,n,n +Hn,−n,n)δnm + (Hn,n,−n)δn,−m

+ (H−m,n,m +Hn,−m,m +Hm,−m,n)(1− δnm)(1− δn,−m), (A 4a)



Nonlinear convection in mushy layers. Part 1 357

T (2)
nm = (H∗−n,n,n +H∗n,−n,n)δnm + (H∗n,n,−n)δn,−m

+(H∗−m,n,m +H∗n,−m,m +H∗m,−m,n)(1− δnm)(1− δn,−m), (A 4b)

T (3)
nm = (H̃−n,n,n + H̃∗n,−n,n)δnm + (H̃n,n,−n)δn,−m

+ (H̃−m,n,m + H̃∗n,−m,m +H∗m,−m,n)(1− δnm)(1− δn,−m), (A 4c)

T (4)
nm = (H̃∗−n,n,n + H̃n,−n,n)δnm + (H̃∗n,n,−n)δn,−m

+ (H̃∗−m,n,m + H̃n,−m,m + H̃m,−m,n)(1− δnm)(1− δn,−m), (A 4d)

T (5)
nm = (H−n,n,n +Hn,−n,n)δnm + (Hn,n,−n)δn,−m

+ (H−m,n,m +Hn,−m,m + H̃m,−m,n)(1− δnm)(1− δn,−m), (A 4e)

T (6)
nm = (H̃−n,n,n + H̃∗n,−n,n)δnm + (H̃n,n,−n)δn,−m

+ (H̃−m,n,m + H̃∗n,−m,m + H̃∗m,−m,n)(1− δnm)(1− δn,−m), (A 4f)

T (7)
nm = (H∗−n,n,n +H∗n,−n,n)δnm + (H∗n,n,−n)δn,−m

+ (H∗−m,n,m +H∗n,−m,m +H∗m,−m,n)(1− δnm)(1− δn,−m), (A 4g)

T (8)
nm = (H̃∗−n,n,n + H̃n,−n,n)δnm + (H̃∗n,n,−n)δn,−m

+ (H̃∗−m,n,m + H̃n,−m,m +Hm,−m,n)(1− δnm)(1− δn,−m). (A 4h)

where

Hlmp = [π2/(2
√
G)](2 + ψlm + ψpm)F2(ψlp) + π3(1 + ψlp + ψlm + ψpm)

×F1(ψlp) + (K2π/
√
G)[(2 + ψlp + ψlm + 2ψpm)F6(Sl, Sp)

−(ψlm + ψpm)F5(Sl, Sp) + (1/π)F7(Sl, Sp), (A 4i)

F5(Sl, Sp) = 〈cos(2πz)fl(z)fp(z)〉, (A 4j)

F6(Sl, Sp) = 〈fl(z)fp(z)〉, (A 4k)

F7(Sl, Sp) = 〈sin(2πz)fp(z)(d/dz)fl(z)〉. (A 4l)

The expression for H̃lmp is the same as that for Hlmp, provided fl(z) is replaced by
f∗l (z).

Appendix B
The solutions to the system of equations and boundary conditions for disturbances

at order ε are

V ′10 = 2 sin(2πz)

l=∞,p=N∑
l=−∞,p=−N

F1(ψlp)(Ã
+
l η

+
l + Ã−l η

−
l )(A+

p η
+
p + A−p η

−
p ), (B 1a)

θ′10 = 2 sin(2πz)

l=∞,p=N∑
l=−∞,p=−N

F2(ψlp)(Ã
+
l η

+
l + Ã−l η

−
l )(A+

p η
+
p + A−p η

−
p ), (B 1b)
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φ′10 = 2 cos(2πz)

l=∞,p=N∑
l=−∞,p=N

F3(ψlp)(Ã
+
l η

+
l + Ã−l η

−
l )(A+

p η
+
p + A−p η

−
p ) + 2i

× sin(2πz)

l=∞,p=N∑
l=−∞,p=−N

F4(ψlp)(Ã
+
l η

+
l + Ã−l η

−
l )(A+

p η
+
p − A−p η−p ). (B 1c)

The system for disturbances at order ε2 is

∆2(−∇2V ′20 + R00θ
′
20 + R20θ

′
00)

= (∂/∂z)[K̃1(ΩV
′
00 · ∇φ00 +ΩV00 · ∇φ′00) +K2(ΩV

′
00 · ∇(φ2

00)

+ 2ΩV00 · ∇(φ′00φ00))] + ∇2[K̃1(φ
′
00∆2V00 + φ00∆2V

′
00)

+K2(2φ
′
00φ00∆2V00 + φ2

00∆2V
′
00)], (B 2a)

∇2θ′20 + G∆2(R00V
′
20 + R20V

′
00)

= GR00(ΩV
′
00 · ∇θ10 +ΩV00 · ∇θ′10 +ΩV ′10 · ∇θ00

+ΩV10 · ∇θ′00) + σ20θ
′
00 + [(1− G)/G]φ′2(−1), (B 2b)

S

(
∂

∂t1
− ∂

∂z

)
φ′20 + Sσ20φ

′
00 + ∆2(R00V

′
20 + R20V

′
00) + ∇2θ′20

= −S
(
ω21

ω01

)
∂φ′00

∂t1
+ R00(ΩV

′
00 · ∇θ10 +ΩV00 · ∇θ′10 +ΩV ′10 · ∇θ00 +ΩV10 · ∇θ′00),

(B 2c)

θ′20 = V ′20 = 0 at z = 0, θ′20 = V ′20 = φ′20 = 0 at z = 1. (B 2d)

The solvability conditions for the disturbance system at order ε2 are reduced to the
following set of equations:

(2R20 − S0σ20)|Ã±n |
=
∑{〈(Ã±n η±n + Ã±−nη

±
−n)[A

+
p η

+
p (Ã+

mη
+
m + Ã−mη

−
m )(HlmpA

+
l η

+
l + H̃lmpA

−
l η
−
l )

+Ã+
p η

+
p (A+

mη
+
m + A−mη

−
m )(HlmpA

+
l η

+
l + H̃lmpA

−
l h
−
l ) + A+

p η
+
p (A+

mη
+
m + A−mη

−
m )

×(HlmpÃ
+
l η

+
l + H̃lmpÃ

−
l η
−
l ) + A−p η

−
p (Ã+

mη
+
m + Ã−mη

−
m )(H̃∗lmpA

+
l η

+
l +H∗lmpA

−
l η
−
l )

+Ã−p η
−
p (A+

mη
+
m + A−mη

−
m )(H̃∗lmpA

+
l η

+
l +H∗lmpA

−
l η
−
l )

+A−p η
−
p (A+

mη
+
m + A−mη

−
m )(H̃∗lmpÃ

+
l η

+
l +H∗lmpÃ

−
l η
−
l )]〉}, (B 3a)

where

S0 = 2S̃0/(πG
√
G) (B 3b)

and

S̃0 =−1 + [4π2Gt/(π
2 − ω2

01)
2][π2 + ω2

01 + 2π2 cos(ω01) + 8π2ω01 sin(ω01)/(π
2 − ω2

01)].

(B 3c)

The result of our calculation of the coefficient S0 indicated that it is always positive,
increases with Gt and decreases with increasing G.
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The solvability conditions for the system of inclined disturbances at order ε2 are
reduced to the following set of equations:

(2R20 − S0σ20)|Ã±r |2
=
∑{〈(Ã±r η̃±r + Ã±−rη̃

±
−r)[A

+
p η

+
p (Ã+

mη̃
+
m + Ã−mη̃

−
m )(HlmpA

+
l η

+
l + H̃lmpA

−
l η
−
l )

+Ã+
l η̃

+
l (A+

mη
+
m + A−mη

−
m )(HlmpA

+
l η

+
l + H̃lmpA

−
l η
−
l )

+A+
p η

+
p (A+

mη
+
m + A−mη

−
m )(HlmpÃ

+
l η̃

+
l + H̃lmpÃ

−
l η̃
−
l ) + A−p η

−
p (Ã+

mη̃
+
m + Ã−mη̃

−
m )

×(H̃∗lmpA
+
l η

+
l +H∗lmpA

−
l η
−
l ) + Ã−p η̃

−
p (A+

mη
+
m + A−mη

−
m )(H̃∗lmpA

+
l η

+
l

+H∗lmpA
−
l η
−
l ) + A−p η

−
p (A+

mη
+
m + A−mη

−
m )(H̃∗lmpÃ

+
l η̃

+
l +H∗lmpÃ

−
l η̃
−
l )〉}. (B 4)
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